## Appendix

Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Algorithms Linking Phylogenies to Transmission Trees

Eben Kenah, Tom Britton, M. Elizabeth Halloran, and Ira M. Longini, Jr.

PLoS Computational Biology 2016

**Assumptions** As stated in the main text, our assumptions are:

- 1. Each individual is infected at most once.
- 2. Each infection is initiated by a single pathogen. Following infection, within-host pathogen evolution occurs and the evolved pathogens are transmitted to others.
- 3. The order in which infections (or onsets of infectiousness) occurred is known.
- 4. We have at least one pathogen sequence from each infected individual, and these sequences are linked in a rooted phylogeny. The root of this phylogeny has a parent node  $r_0$ .
- 5. Each node in the phylogeny represents a pathogen that had a host, which is also the "host" of the node. A parent-child relationship between nodes with different hosts represents a direct transmission of infection from the host of the parent to the host of the child. The node  $r_0$  has a host outside the observed population.

**Lemma 1.** The nodes hosted by an infected individual form a subtree of the phylogenetic tree.

*Proof.* This is trivial if i hosts only one node, so assume i hosts distinct nodes z and z'. Since the phylogeny is a rooted tree, there is a unique path from z to the root node  $r_0$ . Let x be the first node on this path such that  $host(x) \neq i$ . Similarly, let x' be the first node on the path from z' to  $r_0$  such that  $host(x') \neq i$ . If  $x' \neq x$ , there are two possibilities:

- 1. If  $host(x') \neq host(x)$ , then i was infected by two different individuals, violating Assumption 1.
- 2. If host(x') = host(x), then i was infected with two distinct pathogens, violating Assumption 2.



Figure 1: Illustration for Lemma 1 and Theorem 1. The left shows the paths from z and z' to x and x', respectively. On the right is the situation after we prove that x' = x. Solid lines indicate direct parent-child relationships, and dotted lines indicate paths of length  $\geq 0$ . The infector of i must be host(x).

Therefore, x' = x. By definition, x has at least one child y such that host(y) = i. Since host(x) infected i exactly once, there can be at most one such child of x. If z is any node hosted by i, there is a path from z to y that consists entirely of nodes hosted by i. Therefore, the nodes hosted by i form a phylogenetic subtree rooted at y. See Figure 1.

**Theorem 1.** A phylogeny with known interior node hosts implies a unique transmission tree.

*Proof.* Choose an infected individual i. By Lemma 1, the nodes hosted by i form a subtree of the phylogeny. Let y be the root of this subtree and let x = parent(y). Since  $\text{host}(x) \neq i$ , host(x) infected i by Assumption 5. Therefore, the infector of each i is uniquely determined by the phylogeny and the interior node hosts.

**Lemma 2.** For any node x, host(x) = first(x) or host(x) infected first(x).

*Proof.* Let j = first(x), and let  $r_j$  be the root of the subtree consisting of nodes hosted by j. There are three cases:

- 1. If  $r_j = x$ , then  $host(x) = host(r_j) = j$ .
- 2. If  $r_j \notin C_x$ , let  $\ell_j$  be a leaf in  $C_x$  hosted by j. The phylogeny is a tree and x is the root of the clade  $C_x$ , so any path from a node outside  $C_x$  to a node in  $C_x$  must include x. Since all nodes on the path from  $r_j$  to  $\ell_j$  are hosted by j, host(x) = j. See the left side of Figure 2.



Figure 2: Illustrations for Lemma 2. The left shows Case 2, where  $r_j$  is outside  $C_x$  and host(x) = j. The right shows Case 3, where  $r_j$  is inside  $C_x$  and host(x) = i, where i is the infector of j. As in Figure 1, solid lines indicate parent-child relationships and dotted lines indicate paths of length  $\geq 0$ .

- 3. If  $r_i \in C_x$  and  $r_i \neq x$ , let  $i = \text{host}(\text{parent}(r_i))$  be the infector of j.
  - (a) If i = 0, then  $i = host(r_0)$ .
  - (b) If  $i \neq 0$ , then i is the host of a leaf  $\ell_i$ . Since i was infected before j,  $\ell_i$  must be outside  $C_x$ .

Either way, there is a path from node y outside  $C_x$  to parent $(r_j)$  that consists of nodes hosted by i. Since parent $(r_j) \in C_x$ , this path includes x so host(x) = i. See the right side of Figure 2.

Therefore, host(x) = j or  $host(x) = v_j$ , where j = first(x).

**Theorem 2.** A transmission tree corresponds to at most one possible assignment of interior node hosts in a phylogeny.

Proof. Choose an interior node x of the phylogeny  $\Phi$  and assume the transmission tree  $\mathbf{v}$  is known. If  $\operatorname{first}(y) = \operatorname{first}(x)$  for all children y of x, then each clade rooted at a child of x contains a leaf hosted by x, so  $\operatorname{host}(x) = \operatorname{first}(x)$  by Lemma 1. Now suppose there is a child y of x such that  $\operatorname{first}(y) \neq \operatorname{first}(x)$ . By Lemma 2 applied to node x,  $\operatorname{host}(x) = v_{\operatorname{first}(y)}$ . Thus,  $\operatorname{host}(x)$  is uniquely determined by  $\operatorname{first}(y)$  and  $v_{\operatorname{first}(y)}$  for all children y of x. Since  $\operatorname{first}(y)$  is determined by  $\Phi$  and  $v_{\operatorname{first}(y)}$  is determined by  $\mathbf{v}$ , there is at most one assignment of interior node hosts in  $\Phi$  that will produce  $\mathbf{v}$ .

**Lemma 3.** If x is an interior node, host(x) = first(x) or host(x) = host(parent(x)).

*Proof.* Suppose  $host(y) \neq first(y)$ . Then host(y) infected first(y) by Lemma 2. Since the nodes hosted by host(y) form a subtree by Lemma 1 and host(y) is the host of a leaf outside  $C_y$ , we must have host(x) = host(y).

**Lemma 4.** If x is an interior node with child y in the phylogeny, then

$$host(x) \in D_y^* = \begin{cases} D_y & \text{if } first(y) \notin D_y, \\ D_y \cup \mathcal{V}_{first(y)} & \text{if } first(y) \in D_y. \end{cases}$$
 (1)

*Proof.* By Lemma 3, either host(y) = first(y) or host(y) = host(x). We consider two cases:

- 1. If  $first(y) \notin D_y$ , then host(y) = host(x) so  $host(x) \in D_y$ .
- 2. If  $\operatorname{first}(y) \in D_y$ , suppose  $\operatorname{host}(x) \notin D_y$ . By Lemma 3,  $\operatorname{host}(y) = \operatorname{first}(y)$ . By Assumption 5,  $\operatorname{host}(x)$  infected  $\operatorname{first}(y)$ . Thus,  $\operatorname{host}(x) \in D_y \cup \mathcal{V}_{\operatorname{first}(y)}$ .

Therefore,  $host(x) \in D_n^*$  as defined in equation (1).

**Theorem 3.** For any interior node x in the phylogeny,

$$D_x = \bigcap_{y \in children(x)} D_y^*, \tag{2}$$

where children(x) denotes the children of x.

*Proof.* Since Lemma 4 holds for each child of x, we have  $D_x \subseteq \bigcap_y D_y^*$ . Now suppose  $h \in \bigcap_y D_y^*$ . When  $h \in D_y$ , there is at least one possible transmission tree within clade  $C_y$  that can be generated with host(y) = h. When  $h \notin D_y$ , then we must have  $h \in \mathcal{V}_{\text{first}(y)}$  and  $\text{first}(y) \in D_y$ . For each child y of x, set

$$host(y) = \begin{cases} h & \text{if } h \in D_y, \\ first(y) & \text{if } h \notin D_y. \end{cases}$$
 (3)

Using this choice of host(y), we can generate a possible transmission tree within clade  $C_y$  for each child y of x. If host(y) = h, this transmission tree is rooted at h. Otherwise, it is rooted at first(y) and we can add an edge from h to first(y) because  $h \in \mathcal{V}_{\text{first}(y)}$ . These transmission trees rooted at h can be combined into a transmission tree within  $C_x$  that can be generated with host(x) = h. Thus  $\bigcap_y D_y^* \subseteq D_x$ , so the sets must be equal.

Theorem 4.  $H_x = A_x \cap D_x$ .

*Proof.* Since  $D_x$  contains all nodes that satisfy the descendant constraints,  $H_x \subseteq D_x$ . By Lemma 3,  $H_x \subseteq A_x$ . Therefore,  $H_x \subseteq A_x \cap D_x$ . Now choose  $h \in A_x \cap D_x$ . Since  $h \in D_x$ , there is at least one possible transmission tree  $\mathbf{v}_x$  within  $C_x$  that is rooted at h and has an edge ending in each member of  $L_x \setminus \{h\}$ . Since  $h \in A_x$ , there are two cases:

- 1. If  $h \in H_{parent(x)}$ , there is at least one possible transmission tree  $\mathbf{v}_0$  produced when host(parent(x)) = h.
- 2. If  $h \notin H_{\operatorname{parent}(x)}$ , then  $h = \operatorname{first}(x)$ . Let  $g = \operatorname{host}(\operatorname{parent}(x))$ . By Lemma 3,  $\operatorname{host}(x) = g$  or  $\operatorname{host}(x) = h$ . If  $\operatorname{host}(x) = g$ , then g infected h by Lemma 2. If  $\operatorname{host}(x) = h$ , then g infected h by Assumption 5. Therefore,  $g \in \mathcal{V}_h$ . Since  $g \in H_{\operatorname{parent}(x)}$ , we can set  $\operatorname{host}(\operatorname{parent}(x)) = g$  and generate possible transmission tree  $\mathbf{v}_0$  that has an edge from g to h.

For each  $i \in L_x \setminus \{h\}$ , replace its incoming edge in  $\mathbf{v}_0$  with its incoming edge in  $\mathbf{v}_x$ . This generates a possible transmission tree  $\mathbf{v}_1$  that can be generated when  $\mathrm{host}(x) = h$ , so  $h \in H_x$ . Thus  $A_x \cap D_x \subseteq H_x$ , so the sets must be equal.  $\square$ 

```
Input: Rooted phylogeny \Phi and epidemiologic data
Output: H_x for each node x of \Phi
for node x in postorder traversal of \Phi do
   if x is a leaf then D_x = \{ host(x) \};
   else D_x = \bigcap_{y \in \text{children}(x)} D_y^*, where D_y^* is defined in equation (1);
end
for node x in preorder traversal of \Phi do
   if x = r_0 then H_x = \{0\};
   else H_x = D_x \cap A_x, where A_x = H_{parent(x)} \cup \{first(x)\};
end
                    Algorithm 1: Finding host sets.
Input: Rooted phylogeny \Phi with nonempty H_x for each node x
Output: Transmission tree v simultaneously consistent with \Phi and
           epidemiologic data
for node x in preorder traversal of \Phi do
   if x = r_0 then set host(x) = 0;
   else
       w = parent(x);
       choose host(x) \in H_x \cap \{host(w), first(x)\};
       if host(x) \neq host(w) then
        add edge host(w) \to host(x) to v, adding nodes as necessary
       end
   end
```

Algorithm 2: Generating transmission trees.

end

**Theorem 5.** Given a pathogen phylogeny  $\Phi$  that is topologically consistent with the epidemiologic data, a transmission tree  $\mathbf{v}$  is possible if and only if it can be generated using Algorithm 2.

*Proof.* If  $\mathbf{v}$  is a transmission tree simultaneously consistent with the epidemiologic data and  $\Phi$ , then  $\text{host}(x) \in H_x$  for each node x of  $\Phi$ . Choose node  $x \neq r_0$  and let w = parent(x). By Lemma 3,  $\text{host}(x) \in \{\text{host}(w), \text{first}(x)\}$ . Therefore,  $\text{host}(x) \in H_x \cap \{\text{host}(w), \text{first}(x)\}$ . Since this is true for each such x, it is possible to generate  $\mathbf{v}$  using Algorithm 2. Now suppose  $\mathbf{v}$  a transmission tree generated by Algorithm 2. Choose a node  $x \neq r_0$  in  $\Phi$  and let w = parent(x). There are two cases:

- 1. If host(x) = host(w), there is no corresponding edge in **v**.
- 2. If  $host(x) \neq host(w)$ , then host(x) = first(x) so host(w) infected first(x) by Assumption 5. Assume  $host(w) \notin \mathcal{V}_{host(x)}$ . Then  $host(w) \in D_x$  by equation (1). Since  $host(w) \in H_w \subseteq A_x$ , we have  $host(w) \in H_x$ . But then host(w) infected first(x) by Lemma 2, which is a contradiction. Thus  $host(w) \in \mathcal{V}_{first(x)}$ , so the edge  $host(w) \to first(x)$  is consistent with the epidemiologic data.

Since each edge in the  $\mathbf{v}$  is consistent with the epidemiologic data,  $\mathbf{v}$  is a possible transmission tree.

```
Input: Rooted phylogeny \Phi with known host(x) for each node x

Output: Branching time t_x for each node x

for node x in postorder traversal of \Phi do

if x is a leaf then set t_x to be the time pathogen x was sampled;

else

t_{\max} = \min_{y \in \text{children}(x)} t_y;

t_{\max} = \min_{y \in \text{children}(x)} t_{\max};

end

end
```

**Algorithm 3:** Assigning branching times.

**Theorem 6.** If a transmission tree is generated using Algorithm 2, then Algorithm 3 assigns a valid branching time to each internal node of the phylogeny. Any possible assignment of branching times can be generated this way.

*Proof.* We must show that  $t_{\text{host}}(x) < t_{\text{max}}$  so  $t_x$  is chosen from a nonempty interval. For each child y of x, we have two posibilities:

- 1. If host(y) = host(x), then  $t_y > t_{host(x)}$  by construction.
- 2. If  $host(y) \neq host(x)$ , then host(y) = first(y) by Lemma 3 so host(x) infected first(y) by Assumption 5. Thus,  $t_{host(x)} < t_{host(y)} < t_y$ .

Therefore,  $t_{\text{host}(x)} < t_y$  for all y so  $t_{\text{host}(x)} < t_{\text{max}}$  and the algorithm will successfully find a branching time for each interior node x. Now suppose each interior node has been assigned a branching time  $t_x$ . If we traverse the phylogeny in postorder, we must have  $t_x \in (t_{\text{host}(x)}, t_{\text{max}})$  at each interior node x, so these times could be assigned using Algorithm 3.